A variational level set approach for surface area minimization of triply-periodic surfaces

نویسندگان

  • Youngjean Jung
  • Kevin T. Chu
  • Salvatore Torquato
چکیده

In this paper, we study triply periodic surfaces with minimal surface area under a constraint in the volume fraction of the regions (phases) that the surface separates. Using a variational level set method formulation, we present a theoretical characterization of and a numerical algorithm for computing these surfaces. We use our theoretical and computational formulation to study the optimality of the Schwartz P, Schwartz D, and Schoen G surfaces when the volume fractions of the two phases are equal and explore the properties of optimal structures when the volume fractions of the two phases not equal. Due to the computational cost of the fully, threedimensional shape optimization problem, we implement our numerical simulations using a parallel level set method software package.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Phase-field Approach for Surface Area Minimization of Triply-periodic Surfaces

In this paper, we study triply-periodic surfaces with minimal surface area under a constraint in the volume fraction of the regions (phases) that the surface separates. Using a phase-field method formulation, we present a theoretical characterization of and a numerical algorithm for computing these surfaces. We use our theoretical and computational formulation to study the optimality of the Sch...

متن کامل

Fluid permeabilities of triply periodic minimal surfaces.

It has recently been shown that triply periodic two-phase bicontinuous composites with interfaces that are the Schwartz primitive (P) and diamond (D) minimal surfaces are not only geometrically extremal but extremal for simultaneous transport of heat and electricity. The multifunctionality of such two-phase systems has been further established by demonstrating that they are also extremal when a...

متن کامل

Isoperimetric Inequalities in Crystallography

The study of the isoperimetric problem in the presence of crystallographic symmetries is an interesting unsolved question in classical differential geometry: Given a space group G, we want to describe, among surfaces dividing Euclidean 3-space into two G-invariant regions with prescribed volume fractions, those which have the least area per unit cell of the group. We know that this periodic iso...

متن کامل

On the genus of triply periodic minimal surfaces

we prove the existence of embedded minimal surfaces of arbitrary genus g ≥ 3 in any flat 3-torus. In fact we construct a sequence of such surfaces converging to a planar foliation of the 3-torus. In particular, the area of the surface can be chosen arbitrarily large.

متن کامل

Mean survival times of absorbing triply periodic minimal surfaces.

Understanding the transport properties of a porous medium from a knowledge of its microstructure is a problem of great interest in the physical, chemical, and biological sciences. Using a first-passage time method, we compute the mean survival time tau of a Brownian particle among perfectly absorbing traps for a wide class of triply periodic porous media, including minimal surfaces. We find tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 223  شماره 

صفحات  -

تاریخ انتشار 2007